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1 Introduction

Metamodels allow reducing computational costs when the best-estimate natural hazard analyses re-
quire heavy numerical calculations to compute the level of threat and structural response in a proba-
bilistic framework. For example, the computation seismic fragility curves requires a large number of
structural response analyses (ranging from hundreds to several millions depending on the methodology
applied) to evaluate the failure probabilities.However, a large number of structural analyses is not feasi-
ble when considering complex models for structures and equipment, as it is the case in nuclear safety
analyses.

The construction of a metamodel consists of developing for a simplified expression between model input
and output to allow for probabilistic and sensitivity analyses at an affordable computational cost. The
input parameters are the so-called intensity measures (IMs). The latter are proxies such as peak ground
acceleration or the energy of the signal, and they express the nocivity of the earthquake. In conse-
quence, a first step in the metamodelling procedure consists in selecting the most pertinent proxy(ies)
to represent the seismic load. Due to the reduction of the complex ground motion time histories to a
scalar/vector IM, it is clear that even for a given set of input parameters, there is remaining variability
in the model output (e.g., two-time histories with the same PGA might lead to different structural re-
sponses). This is called the prediction uncertainty; depending on the adequateness of the IMs, it can be
more or less important and has to be accounted for in the metamodelling approach.

The model output can be continuous quantities such as an admissible strain level, spectral acceleration
at floor level, or discrete failure indicators (e.g., buckling, etc). In nuclear practice, a lognormal distribu-
tion is generally adopted to develop fragility curves. This modeling choice can be assessed and possibly
confirmed thanks to the metamodel. In what follows, we provide two new approaches for metamod-
elling strategies for seismic fragility analyses to tackle the different aspects of metamodelling for fragility
analyses.

On the other hand, although tsunami hazard assessments are typically based on worst-case scenarios
(e.g., [2]), these scenarios are based on a large variety of information sources, they remain uncertain.
To account for these uncertainties, a key pillar is to conduct different simulations by testing different
parameters’ configurations. Yet, the difficulty is related to the computation time cost of the numerical
simulator, which can be very high (typically several hours). In this situation, metamodels can be a good
option to overcome this computational burden (e.g., [3]).

6
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2 Metamodels for seismic fragility analyses

Fragility curves are computed as conditional probabilities of failure of structures, or critical components,
for given values of a seismic IM (e.g., the Peak Ground Acceleration, PGA) [4]). The computation of
fragility curves requires a realistic estimation of the structure performance subject to seismic excita-
tions via the quantification and the propagation of uncertainties existing in earthquake ground motions,
structural material properties, etc.

These uncertainties are categorized into two groups [5]:

• aleatory uncertainties, which reveal the inherent randomness of variables or stochastic processes,

• and epistemic uncertainties, which originate from the lack of knowledge about the model and
provide a family of confidence interval curves for the fragility estimation.

The distinction of the aleatory and epistemic uncertainties allows for determining confidence intervals
for fragility curves and has a major impact on the High Confidence Low Probability of Failure (HCLPF)
capacity of the analysed equipment.

This conditional probability can be evaluated pointwise for different IM values using the Monte Carlo
method [6, 7], as well as with methods based on the log-normal hypothesis [5, 8, 9]. However, both meth-
ods require a few hundred heavy numerical simulations with the Finite Element Method (FEM).

One way reduce such computational costs consists in building a metamodel to calibrate the statistical
relation between seismic inputs and structural outputs. Some studies regarding the application of meta-
models in fragility analysis have been realized recently. Most of them focus on using seismic IMs to
characterize earthquake accelerations.

Metamodels are constructed to calibrate the relation between Damage Measures (DMs) and uncertain
inputs of the structural models, including IMs and material parameters. The construction of the meta-
models is either achieved by decomposing the nonlinear input-output relation with High-Dimensional
Model Representation (HDMR) [10, 11], or realized with polynomial regression [12, 13, 14, 15, 16]. Al-
ternatively one can use more advanced statistical tools, such as Artificial Neural Networks (ANN) [17, 18,
19, 20, 21], LASSO regression [22], Bayesian networks [23], merging multivariate adaptive regression
splines, radial basis function network, support vector regression [24], Kriging [25, 26], etc.

On the other hand, earthquake accelerations are also used directly as inputs of the metamodel [27] to
predict structural response time histories. The construction of the metamodel is divided into two steps:
the first step is to extract the characteristics of earthquake motions with nonlinear auto-regression; then,
the polynomial chaos expansion is applied to these characteristics to construct the metamodel. DMs
are computed from the structural response time histories, and fragility curves can thus be obtained.
Although this method seems different from the classical metamodeling with IMs, the idea remains the
same: the nonlinear auto-regression serves as a tool to extract the features of earthquake motions and
past values of the structural displacement, while these features are represented by the IMs in classical
approaches. Besides regression methods, classification models like logistic regression, random forests,
and support vector machine are utilized in [28] to predict the probability of failure from the uncertain
inputs directly.

In what follows, we present two approaches to speed up the computation of fragility curves by numerical
simulation by making use of metamodels.

2.1 SVM-based methodology

Recently, Sainct et al. [1] have proposed a methodology based on Support Vector Machines (SVMs)
coupled with an Active Learning algorithm to estimate efficiently seismic fragility curves. In practice, the
input excitation is reduced to some relevant IMs, and then SVMs are used for binary classification of
the structural responses relative to a limit threshold of exceedance. Since the output is not binary but
a real-valued score, a probabilistic interpretation of the output is exploited to estimate fragility curves
as score functions. Thus, with appropriate kernels, the score function can be viewed as an efficient IM
(see, e.g., [29]) since a perfect classifier would lead to a fragility curve in the form of a unit step function
when the problem is linearly separable. This methodology also allows deriving fragility curves easily as
functions of classical IMs (e.g., PGA).
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2.1.1 Model of earthquake ground motion

In order to illustrate the methodology, the seismic ground motion model defined in [30] was implemented.
In this model, a seismic ground motion s(t) with t ∈ [0, T ] is modeled as:

s(t) = q(t,ααα)

[
1

σf (t)

∫ t

−∞
h[t− τ,βββ(τ)]w(τ)dτ

]
, (1)

where q(t,ααα) is a deterministic, non-negative modulating function that is defined as:

q(t,ααα) =

 α1t
2/T 2

1 if 0 ≤ t ≤ T1,
α1 if T1 ≤ t ≤ T2,
α1 exp [−α2(t− T2)α3 ] if T ≥ t ≥ T2,

(2)

and that depends on the vector-valued parameter ααα = (α1, α2, α3, T1, T2) ∈ R5
+. In Eq. (1), terms inside

the squared brackets represent a filtered white-noise process of unit variance.Function, w(t) is a white-
noise process and h(t,βββ) is the Impulse Response Function (IRF) of the linear filter that depends on the
vector-valued parameter βββ. Moreover,

σ2
f (t) =

∫ t

−∞
h2(t− τ,βββ(τ))dτ (3)

is the variance of the process defined by the integral in Eq. (1). Finally, in order to achieve spectral
nonstationarity of the ground motion, the parameter βββ is allowed to depend on the time τ .

Following [30], the IRF is of the form:

h[t− τ,βββ(τ)] =
ωf (τ)√
1− ζ2f

exp [−ζfωf (τ)(t− τ)] sin
[
ωf (τ)

√
1− ζ2f (t− τ)

]
1t≥τ , (4)

where βββ(τ) = [ωf (τ), ζf ], ωf (τ) is the natural frequency (that depends on the time τ ), ζf ∈ [0, 1] is the
(constant) damping ratio and 1t≥τ is the indicator function such that 1t≥τ is equal to unity if t ≥ τ and is
equal to zero otherwise. A linear form is chosen for the frequency:

ωf (τ) = ω0 +
τ

T
(ωn − ω0). (5)

The IRF is, therefore, parameterized by λλλ = (ω0, ωn, ζf ) ∈ R3
+.

The modulation parameters ααα and the filter parameters λλλ are identified independently following the
procedure proposed in [31, 30] for the Nr = 97 acceleration records selected from the European Strong
Motion Database [32] in the domain 5.5 < M < 6.5 and R < 20km (M being the magnitude and R the
distance from the epicenter).

The identification of the model parameters θθθ = (ααα,λλλ) for each of the Nr = 97 acceleration records, gives
Nr data points (θiθiθi)

Nr
i=1 in the parameter space R8

+. The model then allows to generate artificial signals,
thanks to the white-noise. In order to estimate fragility curves, a second level of randomness is added
in the generation process, coming from the parameters θθθ themselves. So, the parameters’ probability
distribution function is estimated using a Gaussian Kernel Density Estimation (KDE) method [33]:

pKDE(θθθ) =
1

Nr

Nr∑
i=1

φH(θθθ − θiθiθi), (6)

where φH is a Gaussian kernel centered at 0 with covariance matrix H properly chosen from the
data points (θiθiθi)

Nr
i=1 (see [33]). In this work Ns = 105 artificial seismic ground motions si(t) are gen-

erated.

2.1.2 Model of the mechanical structure

For the illustrative application of the methodology, a nonlinear single degree of freedom system was
considered. Indeed, despite its extreme simplicity, such model may reflect the essential features of the
nonlinear responses of some real structures. Moreover, in a probabilistic context requiring Monte Carlo

8
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Figure 1: Rheological hysteretic model of the nonlinear oscillator

simulations, it makes it possible to have reference results with reasonable numerical cost. Its equation
of motion reads:

z̈i(t) + 2βωLżi(t) + fnli (t) = −si(t), i ∈ J1, NsK (7)

where żi(t) and z̈i(t) are respectively the relative velocity and acceleration of the unit mass of the sys-
tem submitted to the i-th artificial seismic ground motion si(t) with null initial conditions in velocity and
displacement. In equation 7, β is the damping ratio, ωL = 2πfL is the circular frequency and fnli (t) is
the nonlinear resisting force.

The rheological hysteretic model of the oscillator, defining kinematic hardening, is presented in Figure 1.
In this study, fL = 5 Hz, β = 2%, the yield limit is Y = 5.10−3 m, and the post-yield stiffness amω2

L is
equal to 20% of the elastic stiffness (mω2

L), that is a = 0.2.

Moreover, we call z̃i(t) the relative displacement of the Associated Linear System (ALS, a = 1 see
Figure 1), that is assumed to be known. Its equation of motion is:

¨̃zi(t) + 2βωL ˙̃zi(t) + ω2
Lz̃i(t) = −si(t), (8)

Finally, we set:
Zi = maxt∈[0,T ]|zi(t)|, (9)

and
Li = maxt∈[0,T ]|z̃i(t)|. (10)

2.1.3 Choice of the seismic IM indicators

A complete review of the existing seismic IM indicators can be found in [29]. The methodology presented
here is intended to take into account the advantage of using a ground motion parametric model, in
considering its constitutive parameters as input parameters of a metamodel. Thus, if B = (si(t))i∈J1,NsK
is the database of Ns simulated ground motions, we can consider θiθiθi = (αααi,λλλi) ∈ R8

+ the associated
modulating and filter parameters as inputs. However, they can not be used alone since there is an
infinity of possible realizations of the stochastic process for a set of parameters, due to the white-noise
process. They have to be used additionally with the main classical IM parameters. Thus, for every signal
si(t), we also consider:

1. the Peak Ground Acceleration : PGAi = maxt∈[0,T ] |si(t)| ;

2. the Peak Ground Velocity : Vi = maxt∈[0,T ]

∣∣∣∫ t0 si(τ)dτ
∣∣∣;

3. the Peak Ground Displacement : Di = maxt∈[0,T ]

∣∣∣∫ t0 ∫ τ0 si(u)dudτ
∣∣∣ ;

4. the total energy Ei =
∫ T
0
s2i (τ)dτ (this IM parameter is proportional to the “Arias Intensity” indicator

usually considered);

5. the linear displacement Li. The PSA, ω2
LLi is usually considered as IM indicator, nevertheless,

since the variable of interest is a nonlinear displacement, it is more suitable to use linear displace-
ment.

So, each signal si(t) is represented by a vector XXX?
i = (αααi,λλλi, PGAi, Vi, Di, Ei, Li) ∈ R13

+ in order to
predict whether the nonlinear displacement Zi is greater than a damage state threshold (e.g., twice the
yield displacement Y ).

9
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2.1.4 Preprocessing of the training data

First of all, recall that Ns = 105 signals have been generated and, for each of them, the displacement Li
of the ALS have been calculated.

Signals with very small or very large values of L are discarded from the database. Indeed, on the one
hand, the signals which produce values of L lower than the yield displacement Y are not useful, because
the structural responses do not reach the limit threshold 2Y : if Li < Y , then Zi = Li < Y . This discards
66% of the Ns signals. On the other hand, the very few signals which produce very large values of L
(Li > 6Y ) are also discarded because the mechanical model is not realistic beyond that level.

This gives a subset I of the database, composed of N = 33718 signals, such that ∀i ∈ I, Li ∈
[Y, 6Y ].

In addition, a Box-Cox transform is applied to each of the thirteen entries of XXX?
i = (αααi,λλλi, PGAi,

Vi, Di, Ei, Li) ∈ R13
+ . This nonlinear step is critical for the accuracy of the classification, especially

for linear SVM classifiers. The Box-Cox transform (parameterized by δ ∈ [0,+∞)) reads:

BCδ(x) =

 xδ − 1

δ
if δ 6= 0,

log(x) if δ = 0.
(11)

The parameter δ is optimized, for each entry, in order to obtain an empirical distribution as close as
possible to the normal law by maximizing the log-likelihood. Finally, all of the thirteen components are
standardized, thus forming the training database XXX = {X1X1X1, . . . ,XNXNXN} with XiXiXi ∈ R13.

2.1.5 Support Vector Machines

In machine learning, SVMs are supervised learning models used for classification and regression anal-
ysis. In the linear binary classification setting, given a training data set {X1X1X1, . . . ,XnXnXn} that are vectors in
Rd, and their labels {l1, . . . , ln} in {−1, 1}, the SVM is a hyperplane of Rd that separates the data by a
maximal margin.

More generally, SVMs allow one to project the original training data set {X1X1X1, . . . ,XnXnXn} onto a higher
dimensional feature space via a Mercer kernel operator K. The classifier then associates to each new
signal XXX a score fn(XXX) given by fn(XXX) =

∑n
i=1 ϕiK(XiXiXi,XXX). A new seismic signal, represented by the

vector XXX, has an estimated label l̂ of 1 if fn(XXX) > 0, −1 otherwise.

In a general SVM setting, most of the labeled instancesXiXiXi have an associated coefficient ϕi equal to 0;
the few vectors XiXiXi such that ϕi 6= 0 are called “support vectors”, hence the name “support vector ma-
chine”. This historical distinction among labeled instances is less relevant in the case of active learning,
since most of the ϕi are non-zero. In the linear case, K(XiXiXi,XXX) is the scalar product in Rd, and the score
is:

fn(XXX) = WWW>XXX + c, (12)

where WWW ∈ Rd and c ∈ R depend on the coefficients ϕi.

2.1.6 Active learning

In the case of pool-based active learning, in addition to the labeled setLLL = {X1X1X1, . . . ,XnXnXn}, we have,access
to a set of unlabeled samples UUU = {Xn+1Xn+1Xn+1, . . . ,XNXNXN} (therefore XXX = LLL ∪UUU). We assume that there exists
a way to provide a label for any sample XiXiXi from this set (in our case, running a full simulation of the
physical model using signal si(t)), but the labeling cost is high. After labeling a sample, we simply add it
to the training set.

In order to improve a classifier it seems intuitive to query labels for samples that cannot be easily clas-
sified. Various querying methods are possible [34, 35]. The method presented here only requires to
compute the score fn(XXX) for the samples in the unlabeled set, then to identify a sample that reaches
the minimum of the absolute value |fn(XXX)|, since a score close to 0 means a high uncertainty for this
sample.

The algorithm starts with n = 2 samples with indices j1 and j2, labeled +1 and −1. Recursively, if the
labels of signals j1, . . . , jn are known, it consists in:

10



NARSIS Project (Grant Agreement No. 755439) Del4.2

1. computing the SVM classifier associated with the labeled set {(Xj1Xj1Xj1 , lj1), . . . , (XjnXjnXjn , ljn)} ;

2. computing the score fn(XiXiXi) for each unlabeled instance XiXiXi,
i ∈ J1, NK\{j1, . . . , jn} ;

3. identifying the instance with maximum uncertainty for this classifier:

jn+1 = argmin
i∈J1,NK\{j1,...,jn}

|fn(XiXiXi)|, (13)

and computing the corresponding displacement Zjn+1 by running a full simulation of the mechani-
cal model;

4. adding the instance (Xjn+1
Xjn+1Xjn+1 , ljn+1 = sgn(Zjn+1 − 2Y )) to the labeled set.

No termination criteria are explicitly given here because, in practice, the limitation regarding the number
of training data available is mainly due to the computational cost of the numerical mechanical calcula-
tions.

2.1.7 Fragility Curves estimations

Different procedures can be used to construct non-parametric fragility curves [8, 6, 36]. Here, they are
constructed based on k-means clustering of the IM data [36].

In a Monte Carlo-based approach this means that in each cluster, the empirical probability of failure is
evaluated by the ratio between the number of structural responses that exceed the limit threshold and
the number of structural responses belonging to the cluster.

With SVM classifiers which give to each signal si(t) a real-valued score fn(XiXiXi) whose sign expresses the
estimated label, we first need to assign a probability to estimate fragility curves. For a perfect classifier,
the probability would be 0 if fn(XXX) < 0 and 1 if fn(XXX) > 0. In that case, a logistic function is used in
order to get a probablity in (0, 1):

pn(XXX) =
1

1 + exp[−afn(XXX) + b]
, (14)

where a and b are the slope and intercept parameters of the logistic function (b should be close to 0 if the
classifier has no bias, giving a probability of 1/2 to signals with fn(XXX) ≈ 0). These parameters are esti-
mated by maximizing the likelihood function from Eq. (14) on the labeled set {(Xj1Xj1Xj1 , lj1), . . . , (XjnXjnXjn , ljn)}.
The estimation of the score-based fragility curve is given by Eq. (14). If we are interested in more-
understandable fragility curves such as PGA-based fragility curves (or an other IM-based fragility curves),
the classifier should first be used to predict the scores and the associated probabilities by Eq. (14) of
several new input parameters. These new input parameters correspond to those which were not se-
lected for the construction of the classifier, or other ones generated from new simulations of the seismic
ground motion model. If we consider this probability as a function of four parameters (pn(L, V, PGA,ω0)
if XXX ∈ R4), then any of those parameters can be used to define a posteriori a fragility curve depending
on this parameter, averaging over the other ones:

pn(PGA) = E[pn(XXX)|PGA]. (15)

In practice, to obtain numerically the corresponding estimated and reference probabilities, we use k-
means algorithm, and divide the database into K groups (I1, . . . , IK) depending on their PGA (resp. on
their L, etc.), then compute pestk and prefk as:

pestk = 1
nk

∑
i∈Ik pn(Xi),

prefk = 1
nk

# {i ∈ Ik|li = 1} , with nk = #Ik. (16)

Figures 2 and 3 show two examples of such curves, using PGA or L ; pn(XXX) is computed using a linear
SVM classifier in R4 with n = 100 or n = 1000 simulations. In this case, twenty test cases (corresponding
to twenty pairs of starting points for the active learning algorithm) are shown in a single figure. The
distance between the reference and estimated curves is small in all cases, even with n = 100 labeled
instances.
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Figure 2: Reference and estimated fragility curves as a function of PGA, using (a) n = 100 and (b)
n = 1000 labeled points [1].
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Figure 3: Reference and estimated fragility curves as a function of L, using (a) n = 100 and (b) n = 1000
labeled points [1].

2.2 ANN Metamodel

A computationally efficient methodology for the application of Artificial Neural Networks (ANN) to charac-
terize the IMs-DM relation is proposed, from the selection of the most relevant IMs to the quantification
of ANN prediction uncertainties. Most existing works take subjective choices of the IMs as inputs of
metamodels according to their expertise (e.g., PGA or PGA with other IMs). One IM is obviously not
sufficient to represent the seismic ground motion. More systematic approaches are proposed in [17, 20]
to guide the selection of IMs. Here, different sets of IMs are selected to train ANNs in [17] and the
performances of the different sets of IMs are analyzed with respect to their corresponding ANNs median
training errors.

It is difficult to directly use stochastic ground motions to construct the metamodels, because the high-
dimensionality of the inputs of such metamodels requires a very large size of training data to accurately
approximate the input-output relation [25]. An alternative is to use seismic IMs as inputs of the metamod-
els to represent ground motions. Various functional models based on the calibration of IMs-DM relation
have been proposed [37, 38, 39]. According to these works, a nonlinear regression metamodel seems
more suitable to provide adequate nonlinearity in the IMs-DM relation. However, with this approach, the
simplification of the continuous stochastic ground motion by a small set of IMs may not allow to describe
all the random variability in the earthquake motion [10]. Therefore, it cannot ensure the performance of
the metamodels.

The following aspects are addressed here:

1. Implementation of an efficient algorithm to select IMs as inputs of the ANN. The most relevant IMs
are selected with a forward selection approach based on semi-partial correlation coefficients;
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2. Quantification and investigation of the ANN prediction uncertainty computed with the delta method.
It consists of an aleatory component from the simplification of the seismic inputs and an epistemic
model uncertainty from the limited size of the training data. The aleatory component is integrated
in the computation of fragility curves, whereas the epistemic component provides the confidence
intervals;

3. Computation of fragility curves with Monte Carlo method and verification of the validity of the
log-normal assumption. This methodology is applied to estimate the probability of failure of an
electrical cabinet in a reactor building studied in the framework of the KARISMA benchmark.

The uncertainty in the metamodel predictions is also investigated. The ANN prediction uncertainty is
considered to be epistemic in [40] to quantify the impact of the size of the used data. The prediction
uncertainty is determined by the bootstrap approach, in which retrainings of ANNs are necessary, and
it provides confidence intervals of fragility curves. On the contrary, other works integrate the metamodel
uncertainty completely into Pf (α) by modeling the standard deviation (Std) of the residual with a dual
metamodel (quadratic response surface, HDMR or Kriging) [25, 11, 15, 41]. The residual is sampled
from a corresponding normal distribution, and it is added to the mean structural DM predicted by the
primal metamodel. With this approach, the residual is an aleatory uncertainty, and the influence of
the size of the training data is not accounted for. In addition, the number of FEM simulations required
by the dual metamodel approach can be very large, because a number of FEM simulations should be
performed at every design point with different stochastic motions to obtain the Std. Therefore, it may
not be applicable to a very complex structure such as NPP. In this paper, a clearer insight of the ANN
prediction uncertainty computed with the delta method is provided: it consists of an aleatory component
from the simplification of the seismic inputs and an epistemic uncertainty due to the paucity of the training
data. The former is considered in the computation of Pf (α), whereas the latter is used in the estimation
of confidence intervals.

Among various types of metamodels, ANNs are chosen due to their adequate nonlinearity and their
excellent universal approximation capability for continuous bounded functions [42, 43] (e.g. compared
to polynomial response surfaces). Firstly, rather than a classification model like a SVM classifier, which
returns only binary failed or survived information for the conditions of structures, an ANN regression
model provides predictive structural responses and offers more flexibility for the fragility analysis. Fur-
thermore, the applicability of the ANN does not depend on the probability distribution of input data, so
it is a versatile model with a very wide domain of application. Finally, a metamodel based on ANN is a
regression rather than an interpolation model. If representative seismic IMs are used to characterize the
continuous seismic motions as inputs of the metamodel, the IMs cannot fully represent the seismic ran-
domness and this introduces a residual term. However, an interpolation model predicts identical outputs
as the original ground motions for the training data: it may thus overfit the input-output relation. This
point is addressed in what follows.

2.2.1 Simulation-based Fragility Analysis

A simulation-based fragility analysis is composed of 3 main steps:

1. Structure modeling. This step consists in establishing a set of mathematical partial differential
equations to describe the mechanical behavior of the underlying model.

2. Numerical simulation and calculation of the DM. Numerical simulations are performed to propa-
gate the uncertainties and to compute the DM. FEM is the most widely used numerical resolution
method.

3. Computation of the conditional probability of failure of the structure. This step is realized by apply-
ing a statistical analysis to the IM-DM data cloud (α, y) computed from the numerical simulation
results.

The global procedure for the estimation of the fragility curves with ANNs is illustrated in Figure 4 [44].
The basic stages are:

1. Preparation of data set by performing FEM simulations;

2. Feature selection to extract the most important IMs as inputs of the ANN;

3. ANN training and validation;
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4. ANN uncertainty quantification;

5. Computation of fragility curves with ANN simulation results.
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Figure 4: Work flow for the computation of fragility curves with ANN

The constriction of the ANN requires conducting a series of numerical simulations with the FEM. The
Soil-Structure Interaction (SSI) should be considered to offer a best estimate of the structural response.
The number of simulations is thus limited due to the computational complexity of the FEM analysis, with
the presence of the SSI. The basic working flow is divided into the following 5 steps illustrated in Figure
4:

1. Generation of synthetic seismic motions at the bedrock. This can be realized by generating a
set of seismic motions compatible with the spectral acceleration predicted by the Ground Motion
Prediction Equations (GMPEs).

2. Convolution of the bedrock accelerations to the free surface. The convolution is performed using a
1D column of soil with the consideration of soil degradation. The degradation of the soil during the
earthquake is accounted for by the Equivalent Linear Method (ELM) based on the 1D soil column
[45].

3. After the convolution, surface ground motions and their corresponding degraded soil profiles are
obtained. The ground motions obtained on the free surface are coherent with the site-specific
degraded soil profiles. The latter is utilized as the input of the SSI analysis, whereas IMs of the
ground motions on the free surface can be extracted.

4. SSI analysis is conducted and structural response time histories can be thus obtained.

5. The DMs are computed by the post-processing of the structural response time histories.

Consequently, the data set IMs-DM is available for the feature selection and further for the construction
of the ANN metamodel.

Mechanical model The mechanical model to compute the DM of a structure or a critical component
can be described as

y = f(a(t)) (17)

where a(t) represents the seismic ground acceleration. The resolution of Eq. 17 is usually time-
consuming, especially when the structural model is very complex. In this way, one needs to resort
to the metamodel to reduce the computational cost of the numerical simulations.
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Metamodel In this paper, a metamodel established for IMs-DM relation is desired. It is used to replace
the mechanical model in order to improve the computational efficiency:

ŷ = f̂(IM1, IM2, ..., IMk) (18)

where the symbol ‘∧’ denotes the results calculated from the metamodel. The regression of the meta-
model leads to a reduction of the variability in the metamodel prediction: y = ŷ + ε. The existence of
the residual ε not only comes from the lack-of-fit of the metamodel, but also has more specific interpre-
tations:

1. The metamodel cannot show sufficient nonlinearity to replace the mechanical model. The resid-
ual value can be very high if a linear metamodel is wrongly selected to substitute a nonlinear
mechanical model.

2. IMs are adopted to represent the inherent randomness of ground motions a(t), which gives rise to
a loss of information in the input variables. Different ground motion time histories with the same set
of IM values lead to different structural responses, in contrast to a deterministic response predicted
by the metamodel. Consequently, ε should be present for the training data in the metamodeling
process. That is also the main reason why a nonlinear regression model like ANN is preferred,
rather than an exact interpolation model, such as Kriging with classical kernels (Gaussian kernel,
Matern kernel, etc).

3. The number of the training data for the development of the metamodel is usually limited due to the
computational cost of FEM simulations.

These facts show the necessity of the quantification of the metamodel prediction uncertainty, in order to
provide reliable applications of metamodels to critical structures such as NPPs.

Both methods, Monte Carlo simulation and linear regression, can be used to compute fragility curves
once the ANN metamodel constructed.

Monte Carlo (MC) method In this method, N seismic records with the same IM level α are collected.
Structural analyses for all N seismic motions are performed, and the probability of failure for the seismic
IM level α is calculated as:

pMC(α) =
1

N

N∑
i=1

1[ycrit − yi(α) < 0] (19)

where 1[ycrit − yi(α) < 0] equals 1 if ycrit − yi(α) < 0, otherwise it equals 0. In particular, the pointwise
MC method serves to confirm the validity of the log-normal assumption for fragility curves.

Regression method with log-normal assumption The log-normal assumption is commonly adopted
to compute the conditional probability of failure. The regression method (Reg), or ‘cloud analysis’, is
based on the linear regression of the data cloud (α, y) in the log-log space [46, 37, 47]:

ln y = c lnα+ ln b+ ε (20)

where b and c are regression parameters determined from the data cloud (lnα, ln y), and the residual ε
follows a normal distribution N (0, β2

R|IM ). βR|IM is calculated as:

βR|IM =

√∑N
i=0(εi − ε̄)2
N − 2

(21)

in which ε̄ is the mean of the regression residuals and N denotes the size of the data (α, y). The
conditional probability of failure can be, thus, calculated:

pf (α) = Φ

(
ln bαc − ln ycrit

βR|IM

)
(22)

where Φ(·) is the cumulative distribution function of the standard normal distribution N (0, 1).
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2.2.2 ANN Training and Validation

The structure of a classical, three-layer, feed-forward ANN is illustrated in Figure 6. Mathematically, this
ANN consists of activation functions (linear functions, and nonlinear tanh functions) and a set of model
parameters. The model parameters are the ANN weights w and biases b, which are adjusted by training
to minimize a cost function. The cost function computes the difference between the ANN predictions ŷ
and the targets y (e.g. FEM simulation results), summed over every training example i. For simplicity
of notation, in this paper, w is used to represent all parameters of the ANNs, including weights and
biases:

E(x;w) =
1

2

N∑
i=1

(ŷi(x;w)− yi)2 (23)

where E(x;w) denotes the cost function which the ANN aims to minimize, N is the total number of ANN
training examples, and x is the ANN input vector.

The ANN is trained based on the gradient vector g, which can be computed efficiently by the back-
propagation algorithm [42, 48]:

g =
∂E(x;w)

∂w
(24)

Input Layer Hidden Layer Output Layer

Figure 6: A multiple-layer perceptron model

For the ANN training, the available data set is divided into 3 independent subsets:

1. Training subset (e.g., 60% of the total data), which is used to determine the optimal weighting
parameters w∗ that minimize the cost function of the ANN model.

2. Validation subset (e.g., 20% of the total data), which supervises the training process. The ANN
training is stopped when the validation error reaches its minimum to avoid overfitting [42, 49]. This
strategy is called early stopping.

3. Test subset (e.g., 20% of the total data), which is independent of the training and validation subsets.
The test subset is not used in the ANN training, but used afterwards to evaluate the generalization
capacity of a trained ANN metamodel.

The ANN is suggested to be trained with IMs-DMs in log-log space to facilitate the consideration of
the ANN uncertainties into the fragility curves. The performance of the ANN can be evaluated by the
root-mean-square error (RMSE). Once trained and validated, the ANN substitutes the FEM model to
accelerate the computation process.
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2.2.3 ANN Uncertainty Quantification

Besides the ANN deterministic prediction ŷ, the confidence interval (CI) of this prediction can be also es-
timated. The main methods to evaluate the prediction intervals (PIs) of ANNs are the bootstrap method,
the Bayesian approach and the delta method [50]. The delta method is adopted in this study due to
its computational efficiency because it does not require repeated trainings of the ANNs with the boot-
strap resampling[51]. Assuming a normal distribution of the ANN training error, this method relies on
the linear Taylor expansion of the ANN model and estimates the PIs of the corresponding linear model
[51, 52, 53]. In this way, the Hessian matrix of the ANN is approximated by the product of the Jacobian
matrices. Mathematically, the PIs are computed with the Std of the ANN training error σANN and the
gradient vector h:

hi =
∂ŷi

∂w
=

∂ŷi

∂E(x;w)

∂E(x;w)

∂w
=

g

ŷi − yi (25)

The Jacobian matrix J of the ANN training data is, hence, constructed as

J =
[
h1 h2 · · · hi · · · hN

]
(26)

where J is a Q ×N matrix, with N the number of the ANN training examples and Q the number of the
weighting parameters in the ANN. Consequently, the prediction uncertainties of ANNs are calculated
as

s2 = σ2
ANN + σ2

ANNh
>
test(JJ

>)−1htest (27)

where s denotes the Std of the ANN predictions.

The source of the ANN prediction uncertainty comes from two aspects:

1. The selected IMs cannot completely represent the variability of the ground motion. This eventually
reduces the variability of the output;

2. The ANN accuracy due to the limited size of data to train ANNs.

It is the statistical uncertainty linked to the ANN model. Let us return to the two components in s2: the first
fixed part (σ2

ANN) represents the ANN training error, and the second part (σ2
ANN,stat , σ2

ANNh
T
test(JJ

T )−1htest)
depends on the training and the test data.

1. The first term σ2
ANN estimates the difference between the FEM simulation results and the pre-

dictions of the ANN. Given that a nonlinear regression returns a regular hyper-surface in a high
dimensional space, the predictions of the ANN show always less variability than the original FEM
data. This phenomenon is mainly due to the loss of the inherent seismic randomness in the input
variables, so that the nature of σ2

ANN can be regarded as the aleatory uncertainty not explained by
the ANN input parameters.

2. The second term σ2
ANN,stat is the statistical uncertainty linked to the limited data used to train and

test the ANNs. The information of the training data is included in the J matrix and htest incorporates
the influence of the test data. It is thus considered as the epistemic uncertainty, and it provides the
confidence intervals of the fragility curves.

These two aspects are illustrated with a simple case study in Figure 7 and Figure 8 for 80 sparse training
data y = sin(x) + z, with z ∼ N (0, 0.12). An ANN is trained with (x, y) where z is assumed to be the
unidentified input. No training data are generated near x = 3, for the purpose of checking the property of
σANN,stat. (b) ANN is trained, with σANN = 0.0931, close to the Std of z. The ANN is then tested on 100
uniformly regenerated data. (c) σANN,stat with a peak near x = 3, where no training data exist. It can be
concluded that σANN,stat captures the scarcity of the training data. In fact, σANN should have contained
also an epistemic uncertainty contribution from the insufficient nonlinearity of the ANN. However, the
high flexibility of the ANN architecture offers an universal approximation capacity to continuous bounded
functions [43]. If the number of the hidden layer units is correctly determined, the error from the ANN
nonlinearity can be considered less important compared to the aleatory randomness neglected in its
inputs. This can be observed from Figure 7: in spite of the existence of the unidentified input z, the
ANN regression curve stays very close to y = sin(x) curve in the training data region. Consequently,
this epistemic contribution is assumed negligible in this study. Next section presents the computation of
fragility curves with the consideration of these two uncertainties.
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2.2.4 Case Study: KARISMA benchmark

In 2007, the Japanese Kashiwazaki-Kariwa (K-K) NPP was affected by the Niigataken-Chuetsu-Oki
Earthquake (NCOE) with a magnitude Mw = 6.6 and an epicenter distance of 16 km. The structure of
the K-K NPP is shown in Figure 2.2.4. In this paper, we are interested in the reliability of a hypothetical
electrical cabinet located on the fifth floor of the Unit 7 reactor building of the NPP (Figure 2.2.4). The
finite element model for the Unit 7 consists of 92,000 degrees of freedom with 10,700 nodes and 15,600
elements, including bar, beam, and different shell elements. The constitutive law of the materials is
considered as linear. The NPP model is embedded 23 meters in the soil, which is accounted for in the
SSI analysis. The structural analyses are carried out with Code Aster, a finite element analysis open-
source software developed by EDF group [54], while the soil part is solved with MISS based on the
Boundary Element Method (BEM) [55].

FEM analyses are performed with 100 triplets of 3D synthetic ground motions are generated at the
bedrock with V s30 = 720 m/s and used for the uncertainty propagation. Given the NCOE scenario, the
generation of the synthetic ground motions are based on scenario spectra predicted by the Campbell-
Bozorgnia 2008 (C&B 2008) GMPE [56]. In order to obtain sufficient failure cases for the fragility anal-
ysis, the synthetic seismic motions at the bedrock are scaled with a factor of three. After analyses
with ELM, 100 triplets of ground motions on the free surface and 100 degraded soil profiles are ob-
tained.

The impedances of the soil and the seismic forces should have been computed for each soil profile
using BEM. However, the high complexity of the embedded foundation makes it hard to achieve: it takes
24 hours to run the BEM simulation for one soil profile. In order to reduce the computational cost, the
3D seismic signals at the bedrock are regrouped into four soil classes according to their PGA values:
i. PGA∈[0, 0.5g) ii. PGA∈[0.5g, 1.0g) iii. PGA∈[1.0g, 1.5g) iv. PGA∈[1.5g, +∞). The degraded soil
profiles are averaged within each class and four soil profiles are obtained to represent four different
degradation levels. The SSI analyses are performed with the 100 ground motions on the free surface,
as well as the impedances and seismic forces calculated from the four soil profiles, to compute the floor
accelerations of the K-K NPP.

Anchorage failure of the electrical cabinet is considered in this study. The capacity is given by the floor
spectral acceleration of the anchorage point around 4Hz, the assumed natural frequency of the cabinet.
The maximum value of the floor spectral accelerations in the two horizontal directions, integrated over a
frequency interval around 4Hz to account for the uncertainty, is defined as the DM y:

y = max
i=X,Y

∫ 4.5

3.5

Sea,i(f)df (28)

where Sea,i denotes the spectral acceleration of the electrical equipment in the i-th direction. Figure
2.2.4 shows the 100 calculated DMs as a function of the geometric mean of the PGAs of the horizontal
seismic motions on the free surface.

The 100 IMs-DM obtained from FEM simulations can be used for the construction and the training of the
ANN metamodel. 8 classical IMs are chosen as candidates for the inputs of the ANN metamodel. The
8 IMs include the commonly used seismic intensity indicators PGA, PGV, PGD, PSa(f0), CAV, Arias
intensity IA, as well as the predominant period Tp used in [57] and the ASA proposed in [58]. These
IMs are presented in detail in Table 1. The geometric means of IMs in the two horizontal directions
are used as scalar IMs for 3D ground motions. The integration domain of the ASA is slightly modified
compared to its initial definition in [58], to consider the uncertainty on the natural frequency of the
electrical cabinet.

The correlation coefficients ρ between the eight IMs and the DM defined by 28 are listed in Table 2. It
can be observed that, among all the eight chosen IMs, ASA is the most relevant IM to the DM, whereas
there is a very weak correlation for Tp.

The statistical distributions of the eight selected IMs are examined to check their log-normality. The eight
proposed IMs are normalized and compared to N (0, 1). The normalization is realized by:

αNorm =
lnα− µlnα

σlnα
(29)

where µlnα and σlnα denote the mean and the Std of lnα, respectively. For simplicity of illustration, the
probability plots of three IMs (PGA, ASA and IA) are shown in Figure 10. Besides, the values of the
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cloud of DMs calculated with FEM (right)
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Table 1: Definitions of classical seismic intensity measures. Legend: PGA (peak ground acceleration),
PGV (peak ground velocity), PGD (peak ground displacement), PSa(f0) (pseudo-spectral acceleration),
ASA (average spectral acceleration), Tp (predominant period), CAV (cumulative absolute velocity), IA
(Arias intensity)

Intensity Measures Definitions Comments
PGA max |a(t)| a(t): seismic acceleration
PGV max |v(t)| v(t): seismic velocity
PGD max |u(t)| u(t): seismic displacement

PSa(f0) Spectral acceleration f0=4Hz, damping 5%
ASA

∫ 4.5

3.5
PSa(f)df f : frequency

Tp argmaxTPSa(1/T ) T = 1/f

CAV
∫ tmax

0
|a(t)|dt tmax: total seismic duration

IA
π
2g

∫ tmax

0
a(t)2dt g = 9.81m/s2

Table 2: Correlation coefficients between IMs and DM
IMs PGA PGV PGD PSa ASA Tp CAV IA
ρ 0.913 0.693 0.420 0.920 0.950 0.093 0.889 0.890

coefficients of determination R2 of the probability plots are given in Table 3, for all the eight IMs: the
closer to the log-normal distribution the IM is, the closer to 1 the value of R2 will be. It can be concluded
that it is reasonable to apply the log-normal distribution model to all eight IMs.

This verification is performed because: i) For the selection of the subset of IMs, the Cholesky factoriza-
tion is executed on the covariance matrix of Gaussian random variables (RVs). As a result, if the IMs
follow log-normal distributions, the Cholesky factorization can be directly applied to ln(IMs). ii) For the
generation of IMs in the ANN simulation part, one needs to know the marginal distribution of the IMs to
be generated. In this way, it can be confirmed that the marginal distributions of the IMs are effectively
log-normal. If the IMs are not log-normally distributed, an additional Nataf transformation [59] should be
carried out, to transform arbitrary RVs to Gaussian RVs.

Table 3: Coefficients of determination of the probability plots
IMs PGA PGV PGD PSa ASA Tp CAV IA
R2 0.9877 0.9970 0.9915 0.9866 0.9896 0.9823 0.9912 0.9913

The ANN is trained with two inputs (ASA and IA), four hidden layer nodes and one output, which is
computed according to Eq. 28. The trained ANN is used for all runs of ANN simulations. Point clouds
and fragility curves will be plotted with ASA, which is the most efficient IM in this study.

Training results Training based on the back-propagation algorithm is carried out with the ANN struc-
ture determined by the filter approach. The ANN toolbox used in this study is an open-source python
package ‘Neurolab’ with the self-implemented delta method for the quantification of ANN prediction un-
certainties. The is again divided into 2 subsets: 60 data for training and 20 data for validation. Early
stopping is applied on the validation set to avoid overfitting. The generalization capacity of the ANN is
examined on the 20 test data. The ANN is trained in log-log space. The results of the ANN training,
as well as the point clouds of the ANN outputs ŷ of the test data are shown in Figure 11 and Figure
12. From Figure 11, one can conclude that the training results are satisfactory. Most of the results
in the ‘prediction-target’ space are located in the neighborhood of the dashed diagonal line. The ANN
prediction results for the test data set in Figure 12 reveal a globally satisfactory prediction quality: the
ANN predictions remain coherent with the FEM results. In fact, with a regression model like ANN, it
is not possible to obtain the exact prediction results. In addition, it has to be pointed out that the dis-
persion of the ANN predictions is reduced compared to the FEM results. This is due to the loss of the
aleatory uncertainty by reducing ground motions to two IMs in the ANN metamodeling. The underesti-
mated variability in the ANN predictions will reduce the uncertainty in the fragility curve. The histogram
of the normalized ANN training residuals is plotted in Figure 12. It can be observed that its distribution
is close to N (0, 1), so that the assumption of normality of the ANN residuals in the delta method can be
considered reasonable in this study.
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Figure 10: Probability plots for PGA, ASA and IA to check their log-normality

Comparison with other metamodels The training results of the ANN are compared with those of
other metamodels, including Kriging with Gaussian kernel (an interpolation model), Kriging with Gaus-
sian and White noise kernel (a regression model) and quadratic response surface. The metamodels are
constructed with 80 T-CV data and tested on 20 test data, using the python toolbox scikit-learn. The
RMSE between metamodel predictions and FEM outputs is used to evaluate the accuracy of the differ-
ent metamodels. The seismic IMs used are ASA and IA, the same used for the ANN. The results are
reported in Table 4.

Table 4: Training and test results for different metamodels
Model RMSE Training (80 data) RMSE Test (20 data)
ANN 0.141 0.135

Kriging interpolation (Gaussian kernel) 0 0.43
Kriging regression (Gaussian+White noise kernel) 0.153 0.145

Quadratic response surface 0.151 0.151

Several conclusions can be drawn from Table 4:

1. Kriging interpolation is not an appropriate metamodel for this study, since the test error is much
larger than other models. The reason is the zero residual in the training of Kriging overfits the
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Figure 11: Training set, validation set and test set

model. The generalization capability of the interpolation Kriging model is thus very limited with the
underlying data;

2. Once the residual is present in the training data of the Kriging regression, the performance of the
Kriging is largely improved;

3. Quadratic response surface offers less nonlinearity than ANN, which is why its errors are larger;

4. Overall, ANN shows slightly better performance than other considered metamodels.

Fragility curves After being trained, the ANN can be used to carry out fast-running simulations. For
this purpose, a large number of seismic IMs have to be generated to represent the seismic motions. In
this paper, the following statistical properties of the log-normal distributions of ASA and IA are obtained
from the 100 triplets of seismic signals on the free surface (Table 5).

With the large number of simulation results provided by the ANN, both methods presented above can
be applied for the computation of fragility curves.

Table 5: Statistics of ASA and IA on the free surface
IM Median Log. standard deviation ρ (ASA-IA)

ASA [g] 2.28 0.417 0.846
IA [m/s] 13.13 0.842 0.846
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Figure 12: ANN test point cloud (left) and distribution of ANN training residuals (right)

For the log-normal based fragility curve, 10,000 ASA-IA samples are generated with the statistics in
Table 5. 10,000 ANN simulations are performed with these generated IMs, and the conditional probability
of failure is computed by regression. The computed fragility curve is described by ASA with median
capacity 3.32g and uncertainty βTotal = 0.127, including σANN = 0.094.

The pointwise fragility analysis is performed by conditional sampling of IA for a given value of ASA, since
a conditional bivariate normal distribution is also normally distributed. In the analysis, the values of ASA
are selected in [2.2g, 4.4g] with ∆ASA = 0.1g. For every ASA value, 10,000 IA are generated. Fragility
curves computed with both methods are shown in Figure 13.

Regarding the fragility curves, although there exist some differences between the log-normal based
fragility curve and the MC estimation, the log-normal curve stays coherent with the pointwise MC curve.
The log-normal assumption can be thus confirmed in this study. It is recalled that the source of the
confidence intervals comes only from the paucity of the training data of the ANN.

Based on the soil impedances computed by BEM, one single FEM analysis takes (120.02+66.86)/100 =
1.87 hours on an Intel Xeon E5-2600V2 CPU of 2.7GHz, which makes it almost unaffordable to run
a large number of FEM simulations for the pointwise MC fragility analysis. However, once the ANN
metamodel is established, the pointwise MC fragility analysis can be conducted within 0.25 hours. It has
to be noticed that the ANN metamodel is constructed from the results of 100 FEM simulations, which
means that 132.41 + 120.02 + 66.86 = 319.29 hours of mechanical simulations are the prerequisites for
the ANN metamodel construction.
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3 Metamodels for Tsunami

The metamodel aims at approximating the tsunami-induced Sea Surface Elevation SSE as a function
of the source parameters θ. The selected technique is the kriging approach [60, 61] which enables to
learn in a nonparametric manner the statistical link between the scenario parameters and the indicator
of tsunami hazard. Basic concepts are briefly described in the following for the scalar case. For a more
complete introduction to kriging metamodelling and full derivation of equations, the interested reader
can refer to Forrester et al. [60].

3.1 Kriging metamodelling and validation

Let us define θD the design matrix composed of the vectors of source characteristics θ (i.e. typically
of small number n ∼ 100) so that θD = (θ(1);θ(2); ...;θ(n)) and HD the vector of tsunami-induced
SSE values, which are calculated using the numerical code so that HD = (H(1) = f(θ(1));H(2) =

f(θ(2)); ...;H(n) = f(θ(n))).

Under the assumptions underlying the kriging metamodel, the statistical distribution of H for a new input
vector θ∗ follows a Gaussian distribution conditional on the design matrix θD and of the corresponding
resultsHD with expected value H̃(θ∗) for the new configuration θ∗ given by the kriging mean (using the
ordinary kriging equations):

H̃(θ∗) = Ĥ + r>(θ∗).R−1D .(HD − 1.Ĥ) (30)

where Ĥ = (1>.R−1D .1)
−1
.(1>.R−1D .HD) is a constant; r(θ∗) is the correlation vector between the test

candidate θ∗ and the training samples; RD is the correlation matrix of the training samples θD and 1 is
the unit vector of size n.

The kriging variance holds as follows:

s2(θ∗) = σ̂2.(1− r>(θ∗).R−1D .r(θ∗) +
(1− 1>.R−1D · r(θ∗))2

1>.R−1D .1
) (31)

with the constant s2(θ∗) = (HD − 1.Ĥ)>.R−1D .(HD − 1.Ĥ)>/n.

A key issue is the validation of the approximation i.e. the verification that the statistical emulator can
estimate with high accuracy not-yet-seen new input configurations θ∗. This can rely on leave-one-out
cross-validation procedures (e.g. [62]) from which the coefficient of determination Q2 can be com-
puted:

R2 = 1−
∑n
i=1 (H(i) − H̃(i))

2

(H(i) − H̄)
2 (32)

where H(i) corresponds to the ithH value (i=1,...,n), H̄ to the mean, and H̃(i) to the approximated SSE
value using the metamodel. A coefficient R2 close to 1 indicates that the metamodel is sucessful in
matching the observations. A typical threshold of 80% is often used to evaluate the validation qual-
ity.

In addition, the metamodel errors related to the use of an approximation (of statistical nature) in place
of the true simulator can be modelled via a Gaussian probability distribution with mean corresponds
to equation 30 and variance to equation 31. Along the propagation related to the uncertainties on
θ, the metamodel errors can also be accounted for by sampling from the afore-described Gaussian
distributions (Roustant et al. [61]: Sect. 4.2).

3.2 Tsunami-induced wave modelling procedure

In this section, we describe the numerical modelling strategy to simulate the tsunami-induced sea sur-
face elevation denoted SSE. Numerical simulations are used to estimate the tsunami-induced SSE
based on FUNWAVE-TVD code (see a recent application on the Tohoku-Oki tsunami by Grilli et al. [63]).
It uses a Total Variation Diminishing (SSE) shock-capturing algorithm with a hybrid finite-volume and
finite-difference scheme to more accurately simulate wave breaking and inundation by turning off dis-
persive terms (hence solving Non-Linear Shallow Water equations during breaking) once wave breaking
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is detected (based on the Froude number of the flow). The code is fully parallelized using the Message
Passing Interface (MPI) protocol, using efficient algorithms allowing a substantial acceleration of the
computations with the number of computer cores. A coseismic tsunami is assumed to be generated by
a sudden static vertical displacement of the seafloor due to slip on a dip-slip fault that ruptured at depth.
The rupture is modelled by an elastic dislocation using analytic expressions described by Okada [64].
The coseismic slip is assumed to be spatially uniform on a planar fault centered at a given hypocenter.
The source parameters are: epicentral position (longitude and latitude), depth, azimuth, dip and rake
angles, average coseismic slip along fault, length and width of fault.

3.3 Case study: Ligurian sea tsunami

In this section, we first provide details on the Ligurian case study and discuss results. These develop-
ments initiated in a previous project (ANR Tandem) were used as a basis for NARSIS work on meta-
models.

3.3.1 Description of the Ligurian case

The study is focused on the Ligurian sea tsunami (see location in Figure 14) induced by the damaging
historical earthquake in 1887. The February, 23rd 1887 earthquake was the largest event reported in
the Alps-Liguria region. It induced damages due to ground shaking and the largest coseismic tsunami
recorded in the North-West Mediterranean basin [65]. This event occurred in a low deformation rate
region, namely the Alps-Ligurian Basin junction, but is associated with some historical earthquakes
as indicated in Figure 14 (see also [66, 67] for a more detailed introduction of the regional context).
Location, magnitude and fault mechanism responsible for the 1887 event have been discussed for a
long time (e.g. [68]). In particular, the magnitude (Mw) range proposed for this event ranges from 6.2
to 6.9 [66]. From local seismotectonic analysis and macroseismic as well as from tsunami historical
databases and simulations, Larroque et al. [66] and Ioualalen et al. [67] proposed that the 1887 Ligurian
earthquake occurred along some segments of the Ligurian Faults system (Figure 14, bottom). In the
following, we primarily focus on a North dipping fault, which is one of the most plausible scenario [67].
Based on these studies as well as on local tectonic setting, uncertainty ranges are constrained for nine
source parameters (Table 6), by assuming that the source parameter’ variability is described by a uniform
probability law.

Table 6: Uncertainty range of the source and bias parameters in the Ligurian case
Source parameter Lower bound Upper bound Unit Symbol

longitude 7.78 8.15 ◦ Lon
latitude 43.45 43.92 ◦ Lat
Depth 5 20 km Z

Azimuth 220 260 ◦ Azi
Dip 10 70 ◦ Dip

Rake 70 110 ◦ Rake
Average slip 0.3 2 m D

Length 20 57 km L
Width 10 22 km W

3.3.2 Application and analysis of the simulation results

Given the domain of variation of the different source model parameters (Table 6), three hundred of sim-
ulation scenarios were generated (each being associated to a different setting of source parameters’
values) using the Latin Hypercube Sampling (LHS) method [69]. The mesh model in spherical coordi-
nates is based on the bathymetry dataset of European Marine Observation and Data Network [70] at a
spatial resolution of 0.002◦ (∼ 230 m); see Figure 14. It is composed of more than 2 millions of mesh
cells and extends from Marseille to Genova. The computation time cost is of around 0.5-1 hour (for a
single model run) using a cluster of 96 computers running in parallel.

Kriging metamodels were constructed by considering the different key locations along the coast (Figure
14). A leave-one-out cross –validation procedure was conducted to confirm the predictability of the
different metamodels: this showed R2 indicator values of at least 85% hence confirming the validity of
replacing the long running simulators by these metamodels (Figure 15).
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Figure 14: (a) Location of the test case for the development of the kriging-based procedure. (b) The
coloured envelope corresponds to the map of maximum of sea surface elevation SSE averaged over 300
long-running simulations given the 1887 earthquake event (and the uncertainties on its characteristics).

These validated kriging metamodels were then used in place of the long running simulators within a
Monte-Carlo setting (using 1,000 random draws) to evaluate the cumulative probability of SSE given the
uncertainties on the worst-case scenario together with the metamodel errors. Figure 16 provides these
probabilistic curves considering the different locations along the coast. These results can be useful to
any Probabilistic Safety Analysis for NPP focused on tsunami hazard.
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Figure 15: Comparison between observations (i.e. the results derived from the long running simulations)
and the kriging-based predictions. The R2 indicates whether the fit can be considered satisfactory
(provided that the value exceeds at least 80%).
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Figure 16: Cumulative Distribution Function for the maximum Sea Surface Elevation induced by the
worst case scenario of the 1887 earthquake (plus the uncertainties on its characteristics) using the
metamodels built along the coast.
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4 Conclusion

In this report, different metamodeling strategies have been presented for probabilistic safety analyses of
nuclear power plants submitted to tsunami and seismic hazards.

For seismic risks, the methodologies based on ANN and SVM show good performances in order to
assess fragility curves when aleatory uncertainties have a predominant contribution in the variability of
structural response. Once trained, the metamodels allows carrying out a large number of simulations for
both parametric and non-parametric fragility analyses, at negligible computational cost.

Regarding the SVM-based methodology, it has been shown that a simple and universal preprocessing
of the data (Box-Cox transformation of the input parameters) makes it possible to use a simple linear
SVM to obtain a very precise classifier after only one hundred mechanical calculations. The advantage
of a machine learning-based approach is that the input parameters of the earthquake ground motion
model can be used additionally to the classical IM parameters to build the classifier and to improve its
performance. For the class of structures considered, with only four classical seismic parameters (PGA,
V , L, ω0), it has been shown that the PGA-based or L-based fragility curves are very close to the refer-
ence curves obtained with a direct Monte Carlo-based approach.

The ANN based metamodel allows for introducing the residual or predictor uncertainty due to the reduc-
tion of the seismic signal to a set of scalar IMs. The feature selection algorithm allows for determining the
most pertinent set of IMs in order to keep the residual uncertainty as low as possible. The ANN prediction
uncertainty has been discussed thoroughly, the proposed approach allows for the identification of the
aleatory and the epistemic uncertainty components in the ANN prediction uncertainties. Indeed, when
computing fragility curves for seismic PSA of NPP, then it is important to properly distinguish aleatory
and epistemic uncertainties since the latter determine the confidence bounds of failure probabilities and
have a major impact on HCLPF. Also they should be propagated in failure and event trees to determine
the confidence intervals of the final risk estimates in seismic PSA studies. Then, epistemic uncertainties
can be reduced if more information or data is made available. The methodology has been applied to
an industrial complex case study, i.e. Kashiwazaki-Kariwa nuclear power plant in Japan to evaluate the
robustness of an electrical cabinet. The analyses conducted here show that the variability in the re-
sponses of the considered electrical cabinet is dominated by the seismic record-to-record randomness.

Whereas kriging does not seem relevant for seismic fragility curves assessments, it is successfully
applied for uncertainty analysis of tsunami hazard assessments based on a worst case scenario (here
by considering a historical case of the 19th century in the Mediterranean sea). In addition to overcoming
the computaitonal burden related to uncertainty analysis with computer codes, this technique allows to
incorporate the metamodel error in the analysis in order to highlight situations where the high confidnece
in the metamodel-based prediction can be given, or conversely where cautious should be given.
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