

NARSIS

New Approach to Reactor Safety ImprovementS

WP6: Dissemination and Communication activities

Del6.5 – Proceedings of an international scientific workshop related to the main outcomes of NARSIS WPs 1-4 (Poland)

This project has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 755439.

Project Acronym:	NARSIS		
Project Title:	New Approach to Reactor Safety Improvements		
Deliverable:	Del6.5 – Proceedings of an international scientific workshop related to the main outcomes of NARSIS WPs 1-4 (Poland)		
Month due:	M30 Month delivered: M38	8	
Leading Partner:	WUT		
Version:	Final		
Primary Author:	E. Foerster, F. Ragon (CEA), P. Mazgaj (WUT)		
Other contributors:	All proceedings' authors		

Deliverable Review:

- Reviewer #1:	Date:
- Reviewer #2:	Date:

Dissemination Level		
PU	Public	X
PP	Restricted to other programme participants (including the Commission Services)	
RE	Restricted to a group specified by the consortium (including the Commission Services)	
СО	Confidential, only for members of the consortium (including the Commission Services)	

Table of contents

1	Executive Summary	4
2	NARSIS Workshop Proceedings	5

1 Executive Summary

This deliverable gives the table of contents of the 1st NARSIS international Workshop held at the Warsaw University of Technology (Poland) on September 2-5, 2019. The proceedings as well as the lectures and training materials can be found online at: http://www.narsis.eu/page/warsaw-workshop-training-probabilistic-safety-assessmentnuclear-facilities.

2 NARSIS Workshop Proceedings

As part of the NARSIS international Workshop ("Training on Probabilistic Safety Assessment for Nuclear Facilities", <u>http://nuclear.itc.pw.edu.pl/narsis-workshop/</u>), held on September 2-5, 2019at the Warsaw University of Technology (Poland), the NARSIS Partners have prepared education and training materials (*cf.* D6.16) as well as papers related to the workshop lectures gathered as proceedings. This report presents the detailed table of contents of the proceedings.

Proceedings of the 1st NARSIS Workshop Training on Probabilistic Safety Assessment for Nuclear Facilities International Training Course Warsaw, Poland, September 2-5, 2019

TABLE OF CONTENTS

Article I - Introduction to External Hazard Events: Background, Parameters and Interactions

I.1 Introduction

I.2 Background to possible event types

- I.2.1 Temporal Scales and Interactions
- I.2.2 What NPPs could this impact?

I.3 Geophysical Hazards

- I.3.1 The case of Kaikoura: knowledge as to what is possible
- I.3.2 Earthquake Shaking
- I.3.3 Tsunami

I.4 Hydro meteorological Hazards

- I.4.1 Usual methodology for analysis of hydro meteorological hazards
- I.4.2 Flood Modelling
- I.4.3 Wind, Lightning and Tornado Modelling
- I.5 Conclusion

Article II - Modelling External Floodings – The quantification of the Extreme Sea Level according to the French flooding guide (ASN n°13) recommendations

- II.1 External Flooding in the French guide for the Safety of Basic Nuclear Installations
- II.2 Evaluation of the RFS "Sea Level and waves" according to the ASN guide principles
 - II.2.1 Reference Flood Situations for Sea level and Waves defined in the French regulatory guide
 - II.2.2 Focus on a typical challenge in extreme hazard assessment: outliers in surges

II.2.3 Example of application: the case of La Rochelle

II.3 Conclusions

Article III - Identification of Critical Elements within NPPs Screening and Ranking Methods

- III.1 Introduction Nuclear safety fundamentals
- III.2 Deterministic classification of SSC
- III.3 PSA description
- III.4 Definition of RISC Categories and utilization for identification of NPP critical elements

Article IV - Methods for the Derivation of Fragility Functions

IV.1 Introduction

IV.2 State-of-the-art of current methods

- IV.2.1 Theoretical framework
- IV.2.2 The separation-of-variables method (safety factor method)
- IV.2.3 Regression models from numerical simulations
 - IV.2.3.1 Regression on the IM-EDP cloud
 - IV.2.3.2 Regression using a binomial distribution
- IV.3 Selection of seismic intensity measures
- IV.4 multi-variate fragility functions
- IV.5 Concluding remarks

Article V - Latent Weaknesses and Root Causes In The Feedback Of Operating Experience Programmes

V.1 Introduction

- V.2 Latent Weaknesses
 - V.2.1 Davis Besse Reactor Pressure Vessel Head Corrosion

V.3 Event Investigation Methods

- V.3.1 Root Cause Analyses
 - V.3.1.1 Event and Causal factor Chart (E&CF Chart)
 - V.3.1.2 ASSET/PROSPER
 - V.3.1.3 HPES Human Performance Enhancement System
 - V.3.1.4 MORT Management Oversight and Risk Tree
- V.3.2 Probabilistic Precursor Analyses
- V.3.3 Deterministic transient analyses
- V.4 Conclusions

Article VI - Uncertainties and Risk Integration

VI.1 Introduction

- VI.2 Setting for uncertainty quantification
 - VI.2.1 Uncertainty classification
 - VI.2.2 Treatment setting
 - VI.2.2.1 Step 1: Problem definition
 - VI.2.2.2 Step 2: Uncertainty representation
 - VI.2.2.3 Step 3: Uncertainty propagation and sensitivity analysis

VI.3 Bayesian-network as an integrative tool

- VI.3.1 Introduction to Bayesian Network
- VI.3.2 Uncertainty representation
- VI.3.3 Uncertainty propagation
- VI.3.4 Sensitivity analysis and probability updating

VI.4 Concluding remarks

Article VII - Risk Assessment Using Bayesian Approach: Risk Informed Validation Framework and Multi-Hazard Risk Assessment

VII.1 Multi-Hazard Risk Assessment Frameworks

VII.1.1 Earthquake Induced External Flooding Hazards =

VII.1.2 Future Work Recommendations

VII.2 Risk Informed Validation Framework

VII.3 Illustration/Case Study: Flooding

VII.3.1 Event Tree / Fault Tree Logic

- VII.3.2 Fragility Estimates
- VII.3.3 Critical Events
- VII.3.4 Validation Metric
- VII.3.5 Additional Data Updating
- VII.4 Summary and Conclusions

Article VIII - Metamodels for Reducing Computational Costs in Probabilistic Safety Analyses

VIII.1 Introduction

VIII.2 Procedure

VIII.2.1 Principles

VIII.2.2 Step 1: setting the training data

VIII.2.3 Step 2: construction of the meta-model

VIII.2.4 Step 3: validation of the meta-model

VIII.2.5 Step 4: use of the meta-model

VIII.3 Case study

VIII.4 Concluding remarks

Article IX - Severe Accident Assessment with Uncertainty and Sensitivity Analysis

- IX.1 Introduction
- IX.2 Severe Accident Simulation
- IX.3 Uncertainty Analysis
- IX.4 Sensitivity Analysis
- IX.5 Summary and Conclusions

Article X - Severe Accident Phenomenology and Management

X.1 Introduction to severe accidents

X.2 phenomenology of severe accidents

- X.2.1 In-vessel phase
 - X.2.1.1 Steam explosions
 - X.2.1.2 Corium relocation
- X.2.2 Ex-vessel phase
 - X.2.2.1 High pressure melt ejection
 - X.2.2.2 Low pressure melt release
 - X.2.2.3 Molten Core-Concrete Interactions
 - X.2.2.4 Creep failure
- X.2.3 Containment response
 - X.2.3.1 Hydrogen combustion

X.3 basic scenarios of severe accidents

- X.3.1 High RCS pressure sequence (e.g. SBO)
- X.3.2 Low RCS pressure sequence (e.g. LB LOCA)

X.4 severe accidents management guidelines (SAMG)

- X.4.1 Diagnostic Flow Chart (DFC)
- X.4.2 Severe Challenge Status Tree
- X.4.3 Severe Accident Control Room Guidelines
- X.4.4 Severe Accident TSC Guidelines
 - X.4.4.1 Inject into the Steam Generators
 - X.4.4.2 Depressurize the RCS
 - X.4.4.3 Inject into the RCS

Article XI - Probabilistic Safety Analysis (PSA): Main Elements and Role in the Process of Safety Assessment and Verification

- XI.1 Introduction
- XI.2 Risk Curve

- XI.3 Safety Management (Risk Management)
- XI.4 Overview of PSA and its main technical elements
- XI.5 Combined use of DSA and PSA in design verification

Article XII - Principles Of Severe Accident Risk Analysis

- XII.1 Introduction
- XII.2 Accident progression logic model
 - XII.2.1 Principles for Characterization of Plant Damage States (PDS)
 - XII.2.2 Principles of Containment Event Tree, Accident Progression and Quantification
 - XII.2.3 Principle characterization of Release Categories (RC)
- XII.3 Severe accident progression and degrees of severity
- XII.4 Types of decision and strategies/actions performed in severe accident management
- XII.5 Attributes for Use in Decision-Making
- XII.6 Summary